

President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024

BOLOGNA BOLOGNA, ROYAL HOTEL CARLTON

Il generation anti-BCMA and anti-GPRC5D autologous CAR-T

Elena Zamagni

Seràgnoli Institute of Hematology

IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy

New Drugs in Hematology

Disclosures of ELENA ZAMAGNI

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
JANSSEN						х	x
BMS						х	x
PFIZER						х	x
SANOFI						x	x
ONCOPEPTIDE						x	x
GSK						x	х
MENARINI						x	x

Current targets for CAR-T- in MM

BCMA

- BCMA is a member of the TNF receptor superfamily
- APRIL and BAFF are known ligands, leading to activation of the NF-κB pathway
- BCMA promotes plasma cell survival, growth, resistance to apoptosis, adhesion, and angiogenesis
- γ-secretase cleaving causes shedding of soluble BCMA
- BCMA is expressed on malignant PCs, at low levels on normal PCs and mature B lymphocytes and is absent in nonhematological tissues

GPRC5D

- GPRC5D is a member of the G proteincoupled receptor family with an **unknown function**
- It is highly expressed on malignant PCs, as well as hard keratinized structures (hair shaft, nail, and central region of the tongue)

Image adapted from Verkleij CPM, et al. Curr Opin Oncol. 2020;32:664-71 and Bruins WSC, et al. Front Immunol. 2020;11:1155.

APRIL, a proliferation-inducing ligand; BAFF, B-cell activating factor; BCMA, B-cell maturation antigen; CD, cluster of differentiation; FcRH5, Fc receptor-like 5; GPRC5D, G-protein coupled receptor family C group 5 member D; lg, immunoglobulin; MM, multiple myeloma; NF-kB, nuclear factor Bs; PC, plasma cell; SLAMF7, signaling lymphocytic activation molecule family member 7; TNF, tumor necrosis factor.

1. Rodríguez-Lobato LG, et al. Front Oncol. 2020;10:1243. 2. Pillarisetti K, et al. Blood Adv. 2020;4:4538–49. 3. Yu B, et al. J Hematol Oncol. 2020;13:125. 4. Verkleij CPM, et al. Blood Adv. 2020;5;2196-215. 5. Smith EL, et al. Sci Transl Med. 2019;11:eaau7746. 6. Li J, et al. Cancer Cell. 2017;31;383-95. 7. Bruins WSC, et al. Front Immunol. 2020;11:1155. 8. Lancman G, et al. Blood Cancer Discov. 2021;2:423-33.

BCMA-targeting CAR-T cells

	Approved CARs		Pha	ise 3	Academic	Alternative construct Short manufacturin		facturing	Allo-CAR	
	lde-cel KarMMa ¹ (n = 196)	Cilta-cel CARTITUDE-1 ² (n = 97)	Ide-cel KarMMa-3 ³ (n = 254)	Cilta-cel CARTITUDE-4 ⁴ (n =208)	ARI0002h ⁵ (n = 30)	CART- ddBCMA ⁶ (n = 31)	FasT CAR-T GC012F ⁷ (n=29)	PHE885 ⁸ (n= 50)	ALLO-715 UNIVERSAL ⁹ (n = 43)	
Phase	Ш	lb/ll	III	Ш	1/11	1/11	I	T.	1	
Target	BCMA	BCMA	BCMA	BCMA	BCMA	BCMA	BCMA/CD19	GPRC5D	BCMA	
scFv	Chimeric mouse	Chimeric llama	Chimeric mouse	Chimeric llama	Humanized	Synthetic protein	Not specified	Human	Human	
Co-stim	4-1BB	4-1BB	4-1BB	4-1BB	4-1BB	4-1BB	NA	4-1BB	4-1BB	
Specificity	Autologous	Autologous	Autologous	Autologous	Autologous	Autologous	Autologous	Autologous	Allogenic	
	Stercel CAR design Autorection yra Same fond a Same fo	4-18B CD3;	Mar-cel CAL design Mar-cel CAL design and and and and and and and an	4.1BB CD3;	L N Hege TM 4-198		CITA COT Des Cart Incorrent Incorent Incorent Incorrent Incorrent Incorrent Incorrent Incorrent Incorrent	Puty human - BCMA antiBCMA scry CDE - 4-188 - C03 zeta -	And	

1. Munshi N, et al. ASCO 2020; 2. Usmani S, et al. ASCO 2022; 3. Rodrigues Otero, EBMT 2023; 4. Einsele H, et al. ASCO 2023; 5. Fernández de Larrea C, et al. EHA 2022; 6. Frigault MJ, et al. ASCO 2022; 7. Li C, et al. EHA 2022; 7. Du J, et al. ASCO 2022; 8. Sperling et al. ASCO 2023; 9. Huang H, et al. ASCO 2022;

Structure of BCMA CAR-T Constructs Approved in RRMM

Ide-Cel structure: Anti-BCMA single-chain variable fragment (svFv) fused to CD8 linker region and the CD137 (4-1BB) costimulatory; CD3ζ signaling domains¹

Cilta-cel structure: Two BCMA-targeting domains designed to confer avidity plus a 4-1BB costimulatory domain²

1. Raje NS et al. ASCO 2018. Abstract 8007. 2. Madduri D et al. ASH 2020. Abstract 177.

Binding Domains

LocoMMotion: Real-life current standards of care in patients with RRMM who received ≥3 prior lines of therapy

SOC treatment Until progressive disease, unacceptable toxicity, or initiation of subsequent antimyeloma therapy

End-of-treatment visit^a

Follow-up Document subsequent SOC treatment information, OS, PFS, ORR, and DOR up to study completion^b

^aEnd-of-treatment visit is defined as ~30 days after completion of the last dose of the first SOC therapy used within the study. ^bEnd of the study is defined as 24 months after the first dose of SOC treatment for the last patient included in the study, except in cases of patient death that would end the study early. DOR, duration of response.

- Median age: 68 years
- Median prior lines: 4 (2–13)
- Triple-class refractory: 73.4%
- ORR: 31.5%
- mDOR: 7.7 months

Ide-cel approval: the KarMMa trial

Second generation CAR-T cell, anti-BCMA murine scFv, 4-1BB costimulatory domain

A = + - 10/ h	Ide-Cel-Treated (N=128)			
AE," n (%)	Any Grade	Grade ≥3		
Hematologic				
Neutropenia	117 (91)	114 (89)		
Anemia	89 (70)	77 (60)		
Thrombocytopenia	81 (63)	67 (52)		
CRS	107 (84)	7 (5)		
Neurotoxicity	23 (18)	4 (3)		

mOS = 24.8 mo

Munshi N, et al. NEJM 2021

FDA approved in 2021 EMA approved in 2021

Cilta-cel approval: the CARTITUDE-1 trial

Second generation CAR-T cell, 2 anti-BCMA camelid VHH single domains, 4-1BB costimulatory domain

AE = (%)	Cilta-cel-Treated (N=97)				
AE, 11 (78)	Any Grade	Grade ≥3			
Hematologic					
Neutropenia	93 (96)	92 (95)			
Anemia	79 (81)	66 (68)			
Thrombocytopenia	77 (80)	58 (60)			
CRS	92 (95)	6 (5)			
Neurotoxicity	20 (21)	10 (10)			

Berdeja J, et al. *Lancet* 2022; Lin Y. et al. ASCO 2023

Longer PFS Was Associated With a CAR+CD8+ Stem Cell–Like Phenotype in the Drug Product

Longer PFS was directly associated with a CAR+CD8+ T-stem cell-like phenotype and inversely correlated with a CAR+CD4+ Treg cell-like phenotype in the drug product

Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) analysis of drug product. CAR, chimeric antigen receptor; PFS, progression-free survival; T_{cm}, central memory T cell; T_{em}, effector memory T cell. Presented by R Montes de Oca at the 65th American Society of Hematology (ASH) Annual Meeting; December 9–12, 2023; San Diego, CA, USA

Real-world data (US consortium)

Ide-cel, n= 159

 National (action of citeria at leukapinetesis)
 No. (2)

 Organ failure (renal, cardiac, hepatic)
 60 (31)

 Prior anti-BCMA therapy
 43 (22)

 Platelets < 50,000/µL</td>
 42 (21)

 Hemoglobin < 8g/dL</td>
 33 (17)

 ECOG PS ≥ 2
 33 (17)

 ANC < 1000/µL</td>
 29 (15)

 PCL, POEMS, amyloidosis, non-secretory
 26 (13)

 myeloma
 26 (13)

Cilta-cel, n= 143

57% of patients (N=81) would have been inelig	ible for
participation in the CARTITUDE-1 trial	
CARTITUDE-1 exclusion criteria at leukapheresis	No. (%)

24 (17)
23 (16)
17 (12)
17 (12)
14 (10)
10 (7)
9 (6)
4 (3)

Hansen et al. ASCO 2023

Outcomes of BCMA-Directed CART Therapy in Patients with RRMM with EMD still an unmet need...

- Real life analysis on 132 pts treated with ide-cel and cilta-cel as per SOC
- 48% previous/current history of EMD prior to CART; pair matched with rest of population
- No different in toxicities (CRS, ICANS, infections)
- No difference in response rate/CR rate
- **Significantly shorter PFS and OS** (p = 0.02 and 0.03, respectively)

Further developments in CAR-Ts use in MM

KarMMa-3, phase 3 trial (2-4 prior lines)

mFU 18.6 mo

Characteristic	Ide-cel (n - 254)	Standard regimens (n - 132)
Median (range) age, years	63 (30-81)	63 (42-83)
Sex, male, n (%)	156 (61)	79 (60)
Median (range) time from diagnosis to screening, years	4.1 (0.2-21.8)	4.0 (0.7-17.7)
High tumor burden, n (%)"	71 (28)	34 (26)
Extramedullary disease, n (%)P	61 (24)	32 (24)
High-risk cytogenetics, n (%)	107 (42)	61 (46)
0et(1/p) t(4;14) t(4;16)	68 (26) 43 (17) 8 (3)	42 (32) 18 (14) 4 (3)
Refractory status, n (%)		
IMiD agent refractory	224 (88)	124 (94)
PI refractory	189 (74)	95 (72)
Daratumumab refractory [®]	242 (95)	123 (93)
Double-class refractory ^b	169 (67)	91 (69)
Triple-class refractory=	164 (65)	89 (67)

	lde-cel (n = 250)			Standard regimens (n = 126)		
All-cause AEs occurring in ≥ 20% patients, n (%)	Any grade	Grade 3/4	Grade 5	Any grade	Grade 3/4	Grade 5
Any	248 (99)	233 (93)	36 (14)	123 (98)	94 (75)	8 (6)
Other	1000				11/2/2003	1
Infections	146 (58)	61 (24)	11 (4)	68 (54)	23 (18)	3 (2)
Upper respiratory tract infections Pneumonia	29 (12) 26 (10)	4 (2) 18 (7)	0 2 (1)	9 (7) 9 (7)	0 5 (4)	0

	Ide-cel (n = 225)		
CRS,* n (%)			
Any grade	197 (88)		
Grade 3/4	9 (4)		
Grade 5	2 (1)		
liNT, ^c n (%)			
Any grade	34 (15)		
Grade 3/4	7 (3)		
Grade 5	0		

Giralt et al. ASTCT 2023, Rodrigues Otero et al. NEJM 2023

Progression-free survival (ITT and high-risk subgroups)

^{as}Median PFS was longer in patients treated with ide-cel vs standard regimens in the overall population and high-risk subgroups; interpretation in patients with R-ISS stage III disease was limited due to small subgroup size

PFS was analyzed in the ITT population of all randomized patients in both arms and included early PFS events occurring between randomization and ide-cel infusion. PFS based on IMWG criteria per IRC. ^aBased on Kaplan-Meier approach; ^bUnstratified HR based on univariate Cox proportional hazard model. CI is two-sided; ^cBased on stratified log-rank test. IMWG, International Myeloma Working Group. 1. Rodríguez-Otero P, et al. *N Engl J Med* 2023;388:1002-1014.

OS analysis confounded by substantial crossover

More than half of patients in SOC arm received ide-cel as subsequent therapy upon PD, most of them within 3-16 mos from randomization

Prespecified crossover-adjusted analysis shows OS benefit of ide-cel

Early deaths in ide-cel arm occurred in pts with multiple high-risk features, due to PD, and mostly in patients who never received ide-cel (value of bridging therapy)

Information fraction for OS was 74% (n = 164/222 required events). ^aBased on Kaplan-Meier approach; ^bStratified HR is based on the univariate Cox proportional hazards model. CI is 2-sided and calculated by bootstrap method; ^cTwo-stage Weibull model without recensoring (prespecified analysis).

Provided by BMS in response to unsolicited requests only.

CARTITUDE-4, phase 3 trial (1 to 3 prior lines)

Overall response rate^{a,b,c}

San Miguel J et al, NEJM 2023

Dhakal et al. ASCO 2023

CARTITUDE-4 As-Cilta-cel Treated Population: The 12-Month PFS Rate in Patients With High-Risk Cytogenetics and EMD

NOT Two of the Same Kind

	CARTITUDE-4 ^[1]	KARMMA-3 ^[2]
LOT eligibility	1-3	2-4
Exposure eligibility	IMiD and PI	IMiD, PI, anti-CD38
Refractoriness eligibility	Lenalidomide	Last line
Age	61.5	63
Median prior LOT	2	3
Refractory to anti-CD38	24%	95%
Refractory to IMiD	100%	88%
Triple-class refractory	14%	65%
t(4;14), t(14;16), or del(17p)	35%	42%
Extramedullary plasmacytoma	21%	24%
Carfilzomib allowed control arm	No	Yes
CAR T on control arm after PD	No	Yes
ORR of control arm	67%	42%
mPFS of control arm (mo)	11.8	4.4
HR for PFS (95% CI)	0.26 (0.18-0.38)	0.49 (0.38-0.65)

1. San-Miguel J, et al. N Engl J Med. 2023;389:335-347; 2. Rodriguez-Otero P, et al. N Engl J Med. 2023;388:1002-1014.

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

KarMMa-2 cohort 2: ide-cel for "functional" HR MM

^aAfter lymphodepletion (cyclophosphamide 300 mg/m² + fludarabine 30 mg/m² × 3), patients received a single infusion of ide-cel at a range of $150-450 \times 10^6$ CAR+ T cells (up to an additional 20%; 20% over the protocol-specified dose constituted overdose); ^bAt investigator discretion, patients could receive maintenance treatment post-infusion; ^cMeasurable disease determined by M protein (serum protein electrophoresis ≥ 0.5 g/dL or urine protein electrophoresis ≥ 200 mg/24 hours) and/or light chain MM without measurable disease in serum or urine (serum immunoglobulin free light chain ≥ 10 mg/dL and abnormal serum immunoglobulin $\kappa:\lambda$ free light chain ratio); ^dMust contain a PI, an IMiD[®] agent, and dexamethasone.

ASCT, autologous stem cell transplantation; CAR, chimeric antigen receptor; CR, complete response; CRR, complete response rate; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; HRQoL, health-related quality of life; ide-cel, idecabtagene vicleucel; IMiD, immunomodulatory drug; IMWG, International Myeloma Working Group; MM, multiple myeloma; MRD, minimal residual disease; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PI, proteasome inhibitor; PK, pharmacokinetics; sCR, stringent complete response; TTP, time to progression; TTR, time to response; VGPR, very good partial response.

Dhodapkar M et al, ASH 2023

Provided by BMS in response to unsolicited requests only.

Best ORR and MRD in cohort 2c

KarMMa-2

- With a median follow-up of 39.4 months, median DOR and PFS NR
 - 36 months DOR 81%, PFS 77%
 - 12 and 24 months sustained MRD 71% and 64%

KARMMA-9 phase III R trial ide-cel vs len currently on-going

Longer-Term Findings From CARTITUDE-2 in Different Early Treatment Settings

Updated Efficacy: Patients Receiving 1-3 Prior Lines of Therapy (Cohort A) and Those With Early Relapse After 1L Treatment (Cohort B)¹

- Patients treated with cilta-cel in earlier LOT in cohort A and B experienced deep and durable responses
- No new CAR-T–related safety signals, except for 1 additional CAR-T cell neurotoxicity in cohort B, were reported

	Cohort A (N = 20)	Cohort B (N = 19)
Follow-up (mo), median (range)	29.9 (3.3-35.6)	27.9 (5.2-32.1)
Overall MRD negativity (10-5), n (%)	17 (100)	14 (93.3)
Sustained MRD negativity ≥6 mo (10 ⁻⁵), n (%)	8 (40.0)	10 (52.6)
Sustained MRD negativity ≥12 mo (10 ⁻⁵), n (%)	7 (35.0)	7 (36.8)
ORR, % (95% CI)	95.0 (75.1-99.9)	100.0 (82.4-100)
sCR, % (95% CI)	85.0 (62.7-96.8)	73.7 (48.8-90.9)
CR, % (95% CI)	5.0 (0.1-24.9)	15.8 (3.4-39.6)
VGPR, % (95% CI)	5.0 (0.1-24.9)	10.5 (1.3-33.1)
PR, % (95% CI)	0	0
DOR (mo), median (95% CI)	NE (23.4-NE)	NE (23.7-NE)
24-mo DOR rate, % (95% CI)	73.3 (47.2-87.9)	70.5 (42.5-86.7)
PFS (mo), median (95% CI)	NE (12.9-NE)	NE (22.6-NE)
24-mo PFS rate, % (95% CI)	75.0 (50.0-88.7)	73.3 (47.2-87.9)
OS (mo), median (95% CI)	NE (21.9-NE)	NE (NE-NE)
24-mo OS rate, % (95% CI)	75.0 (50.0-88.7)	84.2 (58.7-94.6)

CAR-T as first-line therapy in NDTEMM: EMN 28- CARTITUDE 6 trial

Dual primary endpoints:

Sustained MRD-neg CR and PFS

ASCT, autologous stem cell transplant; CR, complete response; D, daratumumab; EMN, European Myeloma Network; ISS, international staging system; MRD, minimal residual disease; PD, progressive disease; PFS, progression-free survival; R, lenalidomide; SPM, second primary malignancies; VRd, bortezomib-lenalidomide-dexamethasone

Further developments in CAR-Ts use in MM

Fractionated initial infusion and booster dose of ARI0002h, a humanised, BCMA-directed CART-cell therapy, for patients with relapsed or refractory multiple myeloma (CARTBCMA-HCB-01): a single-arm, multicentre, academic pilot study

Aina Oliver-Caldés, Verónica González-Calle, Valentín Cabañas, Marta Español-Rego, Paula Rodríguez-Otero, Juan Luis Reguera, Luía López-Corral, Beatriz Martin-Antonio, Aintzane Zabaleta, Susana Inagés, Sara Varea, Laura Rosinol, Ascensión López-Díaz de Cerio, Natalia Tovar, Raquel Jiménez, Miriam López-Parra, Luis Garardo Rodríguez-Lobato, Andrés Sánchez-Salinas, Euldia Olesti, Maria Calvo-Orteu, Julio Delgado, José Antonio Pérez-Simón, Bruno Paiva, Felipe Prósper, Joaquín Sáez-Peñataro, Manel Juan, José M Moraleda, Maria-Victoria Mateos, Mariona Pascal, Alvaro Urbano-Ispizua, Carlos Fernández de Larrea Lancet Oncol 2023; 24: 913-24

	Grade 1	Grade 2	Grade 3–4
Cytokine release syndrome	15/24 (63%)	9/24 (38%)	0
Immune effector cell-associated neurotoxicity syndrome	0	0	0
Infusion reaction	1/30 (3%)	0	0
Tumour lysis syndrome	0	1/30 (3%)	0
Persistent cytopenias	0	0	20/30 (67%)

Data are n (%). Adverse events of special interest are depicted per MedDRA preferred term.

(number censored)

«Next generation» anti-BCMA CART

CC-98633/BMS-986354 is a BCMA CAR T-cell drug product that contains a fully human CAR construct and is manufactured using the NEX-T[™] process shorten manufacturing and improved potency)

- enriched in iess-differentiated memory subtypes, composed primarily of naive-like and central memory CAR T cells, and fewer
 effector and terminally differentiated CAR T cells
- has ~10-fold increased proliferative capacity
- has superior tumor control at equivalent CAR T cell dose

BCMA-targeted fully human CAR construct

What if CAR-T Could Be Manufactured Faster?

Phase 1 Study Results of Durcabtagene Autoleucel , a T-Charge Manufactured BCMA-Directed CAR-T Cell Therapy, for Patients With RRMM¹

Costa L et al, ASH 2022

- Reduces ex vivo culture time to about 24 hours and takes <2 days to manufacture
- Relies entirely on in vivo expansion after CAR-T cell infusion

ddBCMA CART in R/R MM

ddBCMA phase 1 trial

- N=25 RR MM patients
- LoT median ~5 (3-16)
- EMD 40%
- ORR 100%
- CR/sCR 67%
- ≥VGPR 88%
- Responses beyond 18 months including in patients with EMD
- CRS 100%, most Gr ≤2; 4 patients had ICANS (2 had Gr3)

Phase 2 ddBCMA-CAR T currently open and actively enrolling patients at MGH site

Further developments in CAR-Ts use in MM

BCMA/CD19 Fast CART GC012F

Dual targeting

- GC012F targets both BCMA and CD19
- Dual specificity approach to maximize efficacy
- GC012F showed stable CAR expansion and effective functionality

• BCMA/CD19 FAST phase 1 trial

- N=29 R/R MM, 97% heavily pre-treated, with 93% refractory to their last therapy.
- ORR 93%, with 38% of patients achieving MRD negativity
- Median DOR 38 mos
- CRS 86.2%, mostly Gr ≤2; no ICANS

Phase 2 trial currently on-going in ND HR (comprehensive definition) MM, primary end-point MRD 10⁻⁵ (Du J et al, ASH 2023)

MCARH109 (GPRC5D-targeted CAR T cell therapy) Phase 1 first-in-class trial in RRMM

Key inclusion criteria: RRMM ≥3 prior lines, prior IMiDTM agent, prior PI and anti-CD38 mAb. Key baseline characteristics: median age: 60y (38-76); high-risk cytogenetics: 76%; EMD, 41%, median prior lines: 6 (4-14); prior BCMA: 59%; prior BCMAtargeting CAR T cells: 47%; triple-class refractory 94%

• More frequent loss or reduced expression of GPRC5D at relapse

«Next generation» anti-GPRC5D CART

BMS-986393 (CC-95266), a GPRC5D-targeted autologous CAR T-cell therapy, in patients with R/R MM, phase I/II study

BMS-986393 mechanism of action

84 pts (26 at 150 dose), 5 median prior LOT, median follow-up:9 months

• 46% any prior anti-BCMA therapy (36% CAR-T)

Efficacy

ORR in subgroups of interest (all dose levels)

Disease characteristic, % (n/N)	Present	Absent
Prior BCMA treatment	78% 25/32	95% 39/41
Extramedullary disease	84% 26/31	91% 38/42
High-risk cytogenetics ^b	83% 24/29	91% 40/44
Triple-class refractory	88% 50/57	88% 14/16

Median DOR 13 mos

Toxicity

	All treated patients (n = 84)		150 × 10 ⁶ CAR T cells (n = 26)				
	Any grade	Grade 3/4	Any grade	Grade 3/4			
TEAE, n (%)	77 (91.7)	69 (82.1)	26 (100)	24 (92.3)			
Hematologic TEAEs (≥ 30% of all treated patients), n (%)							
Neutropenia	54 (64.3)	52 (61.9)	20 (76.9)	18 (69.2)			
Anemia	40 (47.6)	25 (29.8)	13 (50.0)	11 (42.3)			
Thrombocytopenia	36 (42.9)	22 (26.2)	10 (38.5)	5 (19.2)			
Non-hematologic TEAEs (≥ 30% of all treated patients), n (%)							
CRS	64 (76.2)	3 (3.6)	23 (88.5)	0 (0)			
Infections and infestations	34 (40.5)	11 (13.1)	9 (34.6)	3 (11.5)			
Hypokalemia	31 (36.9)	4 (4.8)	12 (46.2)	2 (7.7)			
Hypocalcemia	28 (33.3)	2 (2.4)	7 (26.9)	0 (0)			
Headache	27 (32.1)	1 (1.2)	8 (30.8)	0 (0)			
Hypophosphatemia	26 (31.0)	2 (2.4)	11 (42.3)	1 (3.8)			

TEAEs related to BMS-986393	All treated patients (n = 84)		150 × 10 ⁶ CAR T cells (n = 26)	
On-target/off-tumor, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4
Dysgeusia/taste disorder	21 (25.0)	0	8 (30.8)	0
Skinª	17 (20.2)	0	4 (15.4)	0
Nails ^b	11 (13.1)	0	3 (11.5)	0
Dysphagia	3 (3.6)	0	1 (3.8)	0
Neurotoxicity, n (%)	Any grade	Grade 3 onlv	Any grade	Grade 3 onlv
ICANS-type neurotoxicity ^c	8 (9.5)	2 (2.4)	1 (3.8)	0
Non-ICANS-type neurotoxicity ^d	9 (10.7)	3 (3.6)	4 (15.4)	1 (3.8)

CONCLUSION

- CARTs, within new immune therapies, represent a new standard of care, after 3/4 line of treatment, where they significantly improved survival outcomes
- 2 anti-BCMA CARTs, ide-cel and cilta-cel, are FDA and EMA approved for RRMM who received at least 3/4 prior LOT; anti-GPRC5D CARTs are under investigation
- Multiple on-going programs include combinations and earlier lines of treatments, since diagnosis;
 CAR-T cell therapy will be compared head-to-head to ASCT in up-front treatment
- «Next generation» CARTs, with improved and faster manufactoring, showed impressive efficacy and lower toxicity
- **Tailoring and sequencing** immunotherapies for RR/MM is an on-going challenge
- Limited access to CAR-T cells remains a challenge in real-life clinical practice

THANKS!

Istituto di Ematologia Seràgnoli

Prof. Michele Cavo

Myeloma Research Group

Myeloma Clinical Research Group

Elena Zamagni Paola Tacchetti Lucia Pantani Katia Mancuso Ilaria Rizzello Emanuele Favero Marco Talarico Flavia Bigi Ilaria Sacchetti Enrica Manzato Simone Masci Roberta Restuccia

Lab of Cytogenetics Nicoletta Testoni Giulia Marzocchi

Lab of Cellular Biology Enrica Borsi

Lab of Molecular Biology

Carolina Terragna Marina Martello Vincenza Solli Andrea Poletti Ilaria Vigliotta Silvia Armuzzi Barbara Turisano Ignazia Pistoia Gaia Mazzucchetti

Data Management

Simona Barbato Giorgia Lazzarini Francesca Trombetta Alessandra Scatà Nicola Parisi Nicola Paprusso

CAR-T Research Unit (F. Bonifazi)